Preview

City Healthcare

Advanced search

Diagnostic Test Systems for Assessing the Risk of Chronic and Infectious Diseases: Basic Principles, Approaches, Advantages and Limitations for Common Use

https://doi.org/10.47619/2713-2617.zm.2025.v.6i4-1;102-

Abstract

The review covers modern diagnostic methods: Sanger sequencing and next-generation sequencing (NGS), polymerase chain reaction (PCR) and its modifications in real time (RT-PCR), enzyme-linked immunosorbent assay (ELISA), high-performance liquid chromatography (HPLC) and diagnostic test systems (DTS) developed on their basis. Using common chronic and infectious diseases as an example, the fundamental principles and modern versions of these methods are discussed, indicating their advantages and limitations for clinical use. The current problems and factors hindering the widespread introduction of these diagnostic methods into healthcare practice in Russia, as well as directions of their development in the near future, are analyzed.

About the Authors

A. N. Chernov
Moscow Scientific and Practical Center for Laboratory Research of the Moscow City Health Department
Russian Federation

Alexander N. Chernov – Cand. Sci. in Biology, Senior Researcher at the Moscow Scientific and Practical Center for Laboratory Research of the Moscow Healthcare Department.

115580, Moscow, South Administrative Okrug, Orekhovy Boulevard, 49, bldg. 1



E. A. Khomyakova
Moscow Scientific and Practical Center for Laboratory Research of the Moscow City Health Department
Russian Federation

Ekaterina A. Khomyakova – Junior Researcher at the Moscow Scientific and Practical Center for Laboratory Research of the Moscow Healthcare Department.

115580, Moscow, South Administrative Okrug, Orekhovy Boulevard, 49, bldg. 1



A. S. Shcherbakova
Moscow Scientific and Practical Center for Laboratory Research of the Moscow City Health Department
Russian Federation

Anastasia S. Shcherbakova – Cand. Sci. in Biology, Senior Researcher at the Moscow Scientific and Practical Center for Laboratory Research of the Moscow Healthcare Department.

115580, Moscow, South Administrative Okrug, Orekhovy Boulevard, 49, bldg. 1



D. A. Yakovleva
Moscow Scientific and Practical Center for Laboratory Research of the Moscow City Health Department; Federal State Budgetary Scientific Institution “I.I. Mechnikov Vaccine and Serum Research Institute”
Russian Federation

Dinora A. Yakovleva – Cand. Sci. in Medicine, Senior Researcher at the I.I. Mechnikov Research Institute of Vaccines and Serums, Senior Researcher at the Moscow Scientific and Practical Center for Laboratory Research of the Moscow Healthcare Department.

115580, Moscow, South Administrative Okrug, Orekhovy Boulevard, 49, bldg. 1; 105064, Moscow, Malyi Kazennyi per. 5a



O. S. Glotov
Moscow Scientific and Practical Center for Laboratory Research of the Moscow City Health Department
Russian Federation

Oleg S. Glotov – Dr. Sci. in Biology, Head of the Genome Center, Moscow Scientific and Practical Center for Laboratory Research of the Moscow Healthcare Department.

115580, Moscow, South Administrative Okrug, Orekhovy Boulevard, 49, bldg. 1



A. G. Komarov
Moscow Scientific and Practical Center for Laboratory Research of the Moscow City Health Department
Russian Federation

Andrey G. Komarov – Chief Specialist in Clinical Laboratory Diagnostics of the Moscow Department of Healthcare, Director of the Moscow Scientific and Practical Center for Laboratory Research of the Moscow Healthcare Department.

115580, Moscow, South Administrative Okrug, Orekhovy Boulevard, 49, bldg. 1



References

1. Munassar M.A., Sosnilo A.I. Tend and forecast of Global Market instruments for laboratory Diagnostic. Sci. J. NRU ITMO. Series «Economics and Environmental Management». 2022;2:94-104. http://dx.doi.org/10.17586/2310-1172-2022-16-2-94-104 (In Russ.)

2. Auerbach A.D., Lee T.M., Hubbard C.C. et al. Diagnostic Errors in Hospitalized Adults Who Died or Were Transferred to Intensive Care. JAMA Intern Med. 2024;184(2):164-173. https://doi.org/10.1001/jamainternmed.2023.7347

3. Ciotti M., Nicolai E., Pieri M. Development and optimization of diagnostic assays for infectious diseases. LabMed Discov. 2024;1(2):100032. https://doi.org/10.1016/j.lmd.2024.100032

4. Glotov O.S., Chernov A.N., Fedyakov M.A. et al. Personalized medicine: the role of sequencing technologies in diagnostics, prediction and therapy of multifactorial diseases. Biol. Communications. 2022;67(4):266-285. https://doi.org/10.21638/spbu03.2022.403

5. Zhang S., Li X., Zhang L. et al. Disease types and pathogenic mechanisms induced by PM2.5 in five human systems: An analysis using omics and human disease databases. Environment Int. 2024;190:108863. https://doi.org/10.1016/j.envint.2024.108863

6. Glotov O.S., Chernov A.N., Glotov A.S. et al. Prospects for using exome sequencing to solve problems in human reproduction (Part I). Obstetrics and Gynecology. 2022;12:34-39. (in Russ) https://dx.doi.org/10.18565/aig.2022.221

7. Sanger F., Coulson A.R. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J. Mol. Biol. 1975;94(3):441-448. https://doi.org/10.1016/0022-2836(75)90213-2

8. International Human Genome Sequencing C. Finishing the euchromatic sequence of the human genome. Nature. 2004;431(7011):931-945. https://doi.org/10.1038/nature03001

9. Brenner S., Johnson M., Bridgham J. et al. Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat. Biotechnol. 2000;18(6):630-634. https://doi.org/10.1038/76469

10. Morganti S., Tarantino P., Ferraro E. et al. Chapter 8. Role of Next-Generation Sequencing Technologies in Personalized Medicine. P5 eHealth: An Agenda for the Health Technologies of the Future. Eds. by G. Pravettoni, S. Triberti; 2020. p. 125-145. https://doi.org/10.1007/978-3-030-27994-3_8

11. Reuter J.A., Spacek D.V., Snyder M.P. High-throughput sequencing technologies. Mol. Cell. 2015;58(4):586-597. https://doi.org/10.1016/j.molcel.2015.05.004

12. Satam H., Joshi K., Mangrolia U. et al. Next-Generation Sequencing Technology: Current Trends and Advancements. Biology (Basel). 2023;12(7):997. https://doi.org/10.3390/biology12070997

13. Hu T., Chitnis N., Monos D., Dinh A. Next-generation sequencing technologies: An overview. Hum Immunol. 2021;82(11):801-811. https://doi.org/10.1016/j.humimm.2021.02.012

14. Yashina E.R., Malakho S.G. Analysis of Russian genomic sequencing market. Modern Economics: Problems and Solutions, 2016;5(77):181-188. https://doi.org/10.17308/meps.2016.5/1427

15. Wang Y., Zhao Y., Bollas A. et al. Nanopore sequencing technology, bioinformatics and applications. Nat. Biotechnol. 2021;39:1348-1365. https://doi.org/10.1038/s41587-021-01108-x

16. Richards S., Aziz N., Bale S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in medicine: official journal of the American College of Medical Genetics. 2015;17(5):405-424. https://doi.org/10.1038/gim.2015.30

17. Kim K.-H. Genetics of Cardiomyopathy: Clinical and Mechanistic Implications for Heart Failure. Korean Circ. J. 2021;51(10):797-836. https://doi.org/10.4070/kcj.2021.0154

18. Abbas M.T., Baba Ali N., Farina J.M. et al. Role of Genetics in Diagnosis and Management of Hypertrophic Cardiomyopathy: A Glimpse into the Future. Biomedicines. 2024;12(3):682. https://doi.org/10.3390/biomedicines12030682

19. Glotov O.S., Chernov A.N., Glotov A.S. Human Exome Sequencing and Predictive Medicine: Analysis of International Data and Own Experience. J. of Personal. Med. 2023;13(8):1236. https://doi.org/10.3390/jpm13081236

20. Fedyakov M.A., Veleslavova O.E., Romanova O.V. et al. New frameshift mutation found in PKP2 gene in arhythmogenic right ventricular cardiomyopathy/dysplasia: a family case study. Vestnik of Saint Petersburg University. Medicine. 2019;14(1):3-13. https://doi.org/10.21638/11701/spbu10.2019.101

21. Savostyanov K.V., Namazova-Baranova L.S., Basargina E.N. et al. The New Genome Variants in Russian Children with Genetically Determined Cardiomyopathies Revealed with Massive Parallel Sequencing. Annals of the Russian Academy of Medical Sciences. 2017;72 (4):242-253. (In Russ.) https://doi.org/10.15690/vramn872

22. Lightbody G., Haberland V., Browne F. et al. Review of applications of high-throughput sequencing in personalized medicine: barriers and facilitators of future progress in research and clinical application. Briefings in Bioinformatics. 2019;20(5):1795-1811. https://doi.org/10.1093/bib/bby051

23. Saiki R.K., Scharf S., Faloona F. et al. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985;230(4732):1350-1354. https://doi.org/10.1126/science.2999980

24. Higuchi R., Dollinger G., Walsh P.S. et al. Simultaneous amplification and detection of specific DNA-sequences. Bio-Technology. 1992;10:413-417. https://doi.org/10.1038/nbt0492-413

25. Kubista M., Andrade J.M., Bengtsson M. et al. The real-time polymerase chain reaction. Mol. Aspects Med. 2006;27(2-3):95-125. https://doi.org/10.1016/j.mam.2005.12.007

26. Zhu H., Zhang H., Xu Y. et al. PCR past, present and future. Biotechniques. 2020;69(4):317-325. https://doi.org/10.2144/btn-2020-0057

27. Ngouth N., Monaco M.C., Walker L. et al. Comparison of qPCR with ddPCR for the quantification of JC polyomavirus in CSF from patients with progressive multifocal leukoencephalopathy. Viruses. 2022;14(6):1246. https://doi.org/10.3390/v14061246

28. Mitton B., Rule R., Said M. Laboratory evaluation of the BioFire FilmArray Pneumonia plus panel compared to conventional methods for the identification of bacteria in lower respiratory tract specimens: a prospective cross-sectional study from South Africa. Diagn. Microbiol. Infect. Dis. 2021;99(2):115236. https://doi.org/10.1016/j.diagmicrobio.2020.115236

29. Peri A.M., Ling W., Furuya-Kanamori L. et al. Performance of BioFire Blood Culture Identification 2 Panel (BCID2) for the detection of bloodstream pathogens and their associated resistance markers: a systematic review and meta-analysis of diagnostic test accuracy studies. BMC Infect. Dis. 2022;22(1):794. https://doi.org/10.1186/s12879-022-07772-x

30. Dobrokhotova Yu.E., Bondarenko K.R., Gushchin A.E. et al. The results of the examination of cervical-vaginal microbiota in pregnant women with threatened preterm birth using a real-time polymerase chain reaction. Obstetrics and Gynecology (Moscow). 2018;11:50-59. https://dx.doi.org/10.18565/aig.2018.11.50-59

31. Savochkina Yu.A., Rumiantseva T.A., Dolgova T.I. et al. The development of technique of diagnostic of vulvovaginal candidiasis based on quantitative mutiplex polymerase chain reaction. Clin. Lab. Diagnostics. 2015;4:56-62. (In Russ.)

32. Chernov A.N., Glotov O.S., Donnikov M.Yu. et al. Prenatal genetic diagnostics: principles, methods, application and prospects. Surgut State University J. Medicine. 2020;2(44):54-65. https://doi.org/10.34822/23049448-2020-2-54-65 (In Russ.)

33. Engvall E., Perlmann P. Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochemistry. 1971;8(9):871-874. https://doi.org/10.1016/0019-2791(71)90454-x

34. Simirsky V.V., Poluyan O.S., Kostyuk S.A. et al. Technological components and methodological foundations for enzyme immunoassay test systems designing. Med. News. 2023; 1:37-44. (In Russ.)

35. Khan M., Shah S.H., Salman M. et al. Enzyme-Linked Immunosorbent Assay versus Chemiluminescent Immunoassay: A General Overview. Global J. of Med. Pharmac. Biomed. Update. 2023;18:1. https://doi.org/10.25259/GJMPBU_77_2022

36. Messacar K., Parker S.K., Todd J.K. et al. Implementation of rapid molecular infectious disease diagnostics: the role of diagnostic and antimicrobial stewardship. J. Clin. Microbiol. 2017;55(3):715-723. https://doi.org/10.1128/JCM.02264-16

37. Schubert M., Bertoglio F., Steinke S. et al. Human serum from SARS-CoV-2-vaccinated and COVID-19 patients shows reduced binding to the RBD of SARS-CoV2 Omicron variant. BMC Med. 2022;20(1):102. https://doi.org/10.1186/s12916-022-02312-5

38. Melkumyan A.R., Priputnevich T.V., Kochetov A.G. et al. Microbiological diagnosis of infections caused by Streptococcus group B in pregnant women and newborns. Clinical guideline. Laboratory Service. 2017;6(2):54-75. (In Russ.). https://doi.org/10.17116/labs20176254-75.

39. Jang A-Y., Choi M.-J., Zhi Y. et al. Development and Validation of Enzyme-Linked Immunosorbent Assay for Group B Streptococcal Polysaccharide Vaccine. Vaccines. 2021;9(6):545. https://doi.org/10.3390/vaccines9060545

40. Olenev A.S., Konopliannikov A.G., Songolova E.N., Stetsyuk O.V. Colonization of pregnant women with group B streptococcus: current view at the problem. Obstetrics, Gynecology and Reproduction. 2022;16(2):182-193. (In Russ.) https://doi.org/10.17749/2313-7347/ob.gyn.rep.2022.284

41. Hettegger P., Huber J., Passecker K. et al. High similarity of IgG antibody profiles in blood and saliva opens opportunities for saliva based serology. PLoS One. 2019;14(6):e0218456. https://doi.org/10.1371/journal.pone.0218456

42. Sacks D.B., Arnold M., Bakris G.L. et al. Guidelines and Recommendations for Laboratory Analysis in the Diagnosis and Management of Diabetes Mellitus. Diabetes Care. 2023;46(10):e151-e199. https://doi.org/10.2337/dci23-0036

43. Jeppsson J-O., Kobold U., Barr J. et al. Approved IFCC reference method for the measurement of HbA1c in human blood. Clin. Chem. Lab. Med. 2002;40(1):78-89. http://dx.doi.org/10.1515/CCLM.2002.016

44. Il’in A.V., Arbuzova M.I., Knyazeva A.P. Glycated hemoglobin as a key parameter in monitoring patients with diabetes mellitus. Optimal organization of testing. Diabetes mellitus. 2008;11(2):60-64. (In Russ.) https://doi.org/10.14341/2072-0351-5762

45. Mukherjee S., Yadav P., Ray S. et al. Clinical Risk Assessment and Comparison of Bias between Laboratory Methods for Estimation of HbA1c for Glycated Hemoglobin in Hyperglycemic Patients. Curr. Diabetes Rev. 2024;20(7):e261023222764. http://doi.org/10.2174/0115733998257140231011102518

46. Eyth E., Zubair M., Naik R. Hemoglobin A1C. In: StatPearls [Internet]; Treasure Island (FL): StatPearls Publishing; 2025. Доступно: https://www.ncbi.nlm.nih.gov/books/NBK549816

47. Gitel E.P., Gindis A.A., Panin V.V. et al. Relevant aspects of identification and interpretation of the glycated hemoglobin research findings. Klinicheskaya Laboratornaya Diagnostika (Russian Clinical Laboratory Diagnostics). 2019;64(8):452-458. (in Russ.)

48. Ali A.H. High-Performance Liquid Chromatography (HPLC): A review. Annals Adv. in Chem. 2022;6(1):010-020. http://dx.doi.org/10.29328/journal.aac.1001026

49. Zhou R., Wang W., Song Z.‐X. et al. Evaluation of a new hemoglobin A1c analyzer for point-of-care testing. J. Clin. Lab. Anal. 2018;32(1):e22172. http://doi.org/10.1002/jcla.22172

50. Ray A., Atal S., Sharma S. et al. Comparison of Glycated Hemoglobin (HbA1c) Values Estimated by High-Performance Liquid Chromatography and Spectrophotometry: A Pilot Study. Cureus. 2024;16(3):e56964. http://doi.org/10.7759/cureus.56964


Review

For citations:


Chernov A.N., Khomyakova E.A., Shcherbakova A.S., Yakovleva D.A., Glotov O.S., Komarov A.G. Diagnostic Test Systems for Assessing the Risk of Chronic and Infectious Diseases: Basic Principles, Approaches, Advantages and Limitations for Common Use. City Healthcare. 2025;6(4-1):102-120. (In Russ.) https://doi.org/10.47619/2713-2617.zm.2025.v.6i4-1;102-

Views: 44


ISSN 2713-2617 (Online)